
B.D.U.C.
BETA DISK USERS CLUB

BETA DISK NEWSLETTER NO. 4

Hello again! Thanks and a quick mention for Dr. Andy Wright
of BETASOFT: in Birmingham for inoluding a line about BDUC in the
BETA BASIC newsletter. This resulted in enquiries fron
Spain, Sweden, Austria,Netherlands, Canada, India and Botswana.

Pee Kee ee we ete mee tenet wee ee mene neem ee ee ee eee cee ewe ee eee ween

CONTRIBUTIONS. CONTRIBUTIONS
Please send your contribution now! More material is required for
forthcoming issues.Please help make this newsletter interesting
and worthwhile. Anything related to Beta hardware or software.

Bernhard Lutz of Germany writes to say that he is in the army
and was a member of the Beta user group set up by Per Henneberg
Kristensen in Denmark. He was disapointed to receive only one
newsletter and no reply to his letters after sending a large
subscription fee, it now seems the club no longer exists. He
sent this RAM Imoge splitter program which was developed for
TRDOS version 4.11.

RAM IMAGE SPLITTER. BY BERNHARD LUTZ. TRDOS 4.11.

When using the “magic button" feature of the Beta disk
interface the RAM image created on disk provides a useful method
of saving programs quickly. However the block of code created is
not really useful for any other purpose because of the way it
has been saved. This program “strips” the screen from the magic
file and enables the code to be saved as two blocks with or
without the screen and enables use of tape and microdrive as
well as disk.

The two code blocks created may then be loaded as required
and may be transferred to microdrive or tape. Future
enhancements to this program will be included goon.
To use the RAM splitter program, type in listing 1 and save a
security copy to tape. A formatted disk must be used to save the
magic file on since the code expects to find the magic file on
track 1 sector @. .

STOP PRESS...STOP PRESS...STOP PRESS...STOP PRESS...STOP PRESS..
A version of this program suitable for TRDOS 5.xx is now

ready and will be included in the next issue.

The splitter program should be saved onto and loaded from
another disk for the same reason as above using the name “boot"

How to use the RAM IMAGE splitter software.

1, With the software you wish to snapshot loaded and running,
press the magico button at a suitable point as normal,

2. When the aagio file has been saved. Load the splitter program
“boot” from the second disk.

3. Option 7 may be used to test whether the copy will run
correotly when it is loaded as a split version. If the test
fails points A to E should be read and the splitter program
run again,

4. Select option 8 (save & copy 16k/48k or screen$). A seven
character file name should be entered, and the program wilt
will split the previously saved RAM image as described. Files
are saved in the following format. Soreen$ are saved with
“name"+"0", Programs are saved with "name"+"1" and .
“name”+"2".

$8. A loader for the split image could be written as
18 CLEAR 27295,
20 LET DOS=15363
38 RANDOMIZE USR DOS:REM:LOAD “name®@“CODE Optional line.
43 RANDOMIZE USR DOS: REM:LOAD “namel”CODE
58 CLS-
6@ RANDOMIZE USR DOS: REM:LOAD’ “name2"CODE
78 RANDOMIZE USR 16384

WHEN THE SPLIT RAM IMAGE FAILS TO WORK CORRECTLY.

A. Sometimes programs use Interrupt Mode 2, so it is necessary
to use option 5 to alter the Interrupt Mode in the machine
code part of the splitter program which is self loading from
lines 89100 to 9130. This operates in a similar way to the "$”
in a magic file name.

B. Some 16k programs test whether there is 48k available and
self relocate so that a 16k program must sometimes saved as a
48k,

C. The disk may be full since the magic files are 192 sectors
long.

D. The magic button may have been pressed at the wrong moment,
if the program is testing what is on the screen, try using

the magic button elswhere in the program.
E. Some programs should have any interrupts disabled using

option 6, which modifies the self loading machine oode.

The locations 27296 to 65535 may be poked as normal but
locations 23296 to 27295 should be poked as (xxxxx-6873), YY.

Listing 1.

10

1028
118

128
1930
140
280

2108

220
328
318
408
580
518
548

55

562
620
6108
708
718
800

805

8128
820
830

848
850
860
870

CLEAR VAL "26999": LET dos=VAL "15363": LET im=VAL "66": LE
T ei=VAL “251”
CLS : PRINT “RAM-IMAGE SPLITTER 1986 BL MENU“
PRINT ’“1 SAVE SCREENS "’'"2 GO TO DOS"’°"3 SPLIT + COPY 48
k"’'"4 SPLIT + COPY 16k"’’"“S INTERRUPT MODE: IM “;"1" AND i
m= VAL "66";"2" AND im=VAL “94"''"6 INTERRUPT:! “;“EI“ AND e
i=VAL "251";"DI" AND ei=VAL "O"''"7 TEST COPY”; TAB VAL “16“
;"STOP GO TO BASIC"
LET AS=INKEY$: IF a$=° STOP “ THEN RANDOMIZE USR VAL “@”
IF a$<"1" OR a$>"7" THEN GO TO VAL “120”
GO TO VAL aS¥*VAL "180"4+VAL “100”
LET ix=VAL "32768": LET t=VAL "1": LET @=VAL “@":; LET 1=VAL
“27": GO SUB VAL "1008"
GO SUB 4028: GO SUB 5002: LET ix=VAL "16364": LET n$=u$+"@"
: LET L=VAL "6912": GO SUB VAL "1200"
RUN
RANDOMIZE USR VAL "18360"
RUN
LET mem=VAL "38240": GO TO VAL "510"
LET mem=VAL “5472”
GO SUB VAL "3202"
GO SUB VAL "2108": GO SUB VAL “20@0": GO SUB VAL "4000": LE
T ix=VAL “27296”: LET l=mem: LET n$=v$+"“1": GO SUB VAL “12
20"
LET ix=VAL "16384": LET 1=VAL "4040": LET n$=v$+"2": GO SUB
VAL "1200" :
RUN .
IF im=VAL "86" THEN LET im=VAL "84°: GO TO VAL “100”
LET im=VAL "86": GO TO VAL “1@0"
IF eisVAL “251" THEN LET ei=VAL “@": GO TO VAL “100”
LET ei=VAL "251": GO TO VAL “100"
CLS : LET 1=VAL “22”: PRINT “1 TEST 48k COPY “'’"2 TEST 16k
COPY “
PRINT '’"INTERRUPTMODE: IM "“; "1" AND im=VAL “86";"2"° AND im
=VAL "94"; ?' “INTERRUPT: “; “ENABLED” AND ef=VAL “251”; “DISAB
BLED” AND ei=VAL “@"
LET aS=INKEYS: IF a$<>"1" AND a$<>“2" THEN GO TO VAL “610"
IF a$="1" THEN LET 1=VAL "150"
LET {x=VAL "27136": LET t=VAL "3"; LET s=VAL "10": GO SUB
VAL “1800" :
GO SUB VAL "3800"
GO SUB VAL "2080"
GO SUB VAL “1680”
RANDOMIZE USR VAL “16384”

sewae

4 gee ap ae

eo eee

Listing | oontinued.
1800

1280
1218
1220
1506

1602

2000

2188

3008

3019
3820
3838
4000
4818
4920
4830
5000

8999
9220

9018

9020

9638

92049
9099
9100

9118

9120

9138

9199
9200

GO SUB VAL “1500": POKE VAL “27005”, INT (ix/VAL “256"): POK
E VAL “27004",ix-VAL “256” *INT (ix/VAL "256"“): POKE VAL "27
@67",t: POKE VAL “27209",s: POKE VAL °27011",1:; RANDOMIZE U
SR “27000”: RETURN
RANDOMIZE USR dos: REM: ERASE n$CODE
RANDOMIZE USR dos: REM: SAVE n$CODE ix, 1
RETURN
RESTORE VAL “9000”: FOR a=VAL "27000" TO VAL "27044": READ
b: POKE a,b: NEXT a: RETURN
RESTORE VAL “910@": FOR a=VAL "16384" TO VAL “16422”: READ
b: POKE a,b: NEXT a: RETURN . .
LET ix=VAL “16423": LET t=VAL "2"; LET ssVAL “11": LET l=VA
L "16": GO SUB VAL °1000": GO SUB VAL "1600": RETURN
LET ix=VAL °27136": LET t=VAL "3": LET s=VAL "10": LET J=VA
L “168": GO SUB VAL “1000": RETURN
LET ix=VAL "22200": LET t=VAL “@": LET s=VAL "O": LET 1=VAL
"1": GO SUB VAL “1000" :
REM IF PEEK 22200=36 THEN LET im=94
LET spisPEEK VAL "22209": LET sp2=PEEK VAL “22210”
RETURN , *
INPUT “ENTER NEW NAME: "; LINE v$
IF LEN v$<1 OR LEN v$>7 THEN GO TO 4000
INPUT “INSERT DESTINATION-DISK THEN PRESS ENTER: ";
RETURN '
RESTORE VAL "9200": FOR a=VAL "40000" TO VAL "40011": READ
b: POKE a,b: NEXT a: RANDOMIZE USR 40000: RETURN
STOP : REM LOADER 27000, 45
DATA VAL “205”, VAL “187",VAL "60",VAL "33",VAL "O", VAL "8",
VAL “22",VAL "O", VAL “30",VAL “O" :
DATA VAL “62",VAL “1",VAL “6",VAL "1", VAL “14", VAL “O", VAL
“245",VAL “197",VAL "213",VAL "205"
DATA VAL “214", VAL °46",VAL “209",VAL "193", VAL “28",VAL- “6
2”,VAL “16",VAL "187",VAL “204",VAL “161”
DATA VAL “105",VAL “241",VAL "61",VAL “4@",VAL “2",VAL “24°
»VAL “231",VAL “205",VAL “124",VAL "60"
DATA VAL “201",VAL “30",VAL "@",VAL "20",VAL "201"
REM RUNNER X, 39
DATA VAL “243”,VAL °237",im,VAL "33",VAL “39",VAL "64", VAL
VAL "17, VAL “@",VAL "91",VAL “1"
DATA VAL “160",VAL "15", VAL “237",VAL “176",VAL “49",spl.sp
2, VAL “241”, VAL “237",VAL "79"
DATA VAL “241",VAL °237",VAL "71",VYAL "241", VAL "225",VAL “
209",VAL “193",VAL "217°,VAL “6",VAL °253"
DATA VAL “225”, VAL "221",VAL "225",VAL “225",VAL "209", VAL
"193",VAL “241",ei,VAL "201"
REM LDIR 32768-16384
DATA 33,0, 128,17,0,64,1,0,27, 237,176,201

rere RNA TUDE RIOT YAP EI TIS POE a a I CT he TT ne ee

MACHINE CODE AND BETA DOS. BY HENDRICK BROOTHAERS,
FOR 4.XX DOS.

Here is another interesting article from Hendrick Broothaers in
Belgium, Part one is in this issue and the second part will
follow in issue 5. The first part contains an explanation of
useful Beta DOS routines and part two has examples of how to use
them from machine code.

These routines are only for version 4.xx through 5.xx. All the
routines can be accessed with a unique CALL address. The CALL
address is 3BFD (15357). When this address js CALLed the number
of the requested routine must be in the C register. The contents
of some other registers and some DOS variables provide
parameters and control over the routines.

In order to gain access to these routines the DOS sust be
switched on, this is done by a CALL 3C@6 (15366) , followed by a
PUSH HL. (the PUSH HL puts a RETURN address on the stack which
will automatically switch the DOS off when we leave our code via
a RETurn) The next thing to dois to set the necessary registers
(if this was not done before), load the C register with the
desired routine number and do a CALL JBFD (15357) followed by a
RETurn.
Here is an explanation of the DOS variables -used by the
routines.

5CD1/2 (23761/2) Auto run line number. Used when a BASIC file is
. written to disk using routine 12. .

§CD2 (23762) Must hold the array character when loading a
DATA file (character or number array) with
routine 14.

§CD? (23767) Buffer address for a read or write of one
sector.

5CD8 (23768) Used in routine 14 if 5D1@ is different from
zero,

5CDD (23773) to Filename. (8 characters).
SCE4 (23788)
SCE5 (23781) Filetype (B) BASIC (C) CODE (D) DATA.
SCE6 (23782) Total length for BASIC,
5CE7 (23783) Load address for CODE or DATA.
5CE8/9 (23784/5) Program length for BASIC or Byte length for

CODE or DATA.
SCEA (23786) File length in sectors.
5CEB/C (23787/8) Sector and track where file starts on disk.
5D@F (23823) Number a file has in the catalogue,

(used by routine 1@).
5D18 (23824) Controls subroutine 14 (sea text).

DESCRIPTION OF THE ROUTINES. ;
The routines are numbered @ to 20 (or in HEX @@ to 14).

ROUTINE @ (# 08)

The currently selected drive is restored to track @ and the
break a is checked.
SAT INE D *(# 81)

Eslecta the drive who’s number is in the A register.
ROITIOE 2 (# 82) :

Pasthions the head on the track number that is in the A register
on routine entry.

ROUTINE 3 (# @3)

Store A register in 5CFF (23807) (= sector for read or write).

ROUTINE 4 (#8 04)

Store HL register in 5D@@ (23808) (= buffer address).
Note: (routines 3 and “4 have no specific stand-alone use, they
are called from within other EEO te

ROUTINE 5 (# @5)

READ from disk. Any sector/track and number of sectors:
Registers on entry: B = number of sectors to read

DE track/sector to read from
HL buffer address for read data

ROUTINE 6 (# 26)

’ WRITE to disk. Any sector/track and number of sectors.
Registers on entry: B = number of sectors to write

DE = track/sector to write to
HL = buffer address for write data

ROUTINE 7 (# 87)

CATalogue to stream whose number is in the A register.
ROUTINE 6 (# 8 8)

Read file info from track zero to DOS variables 5CDD to 5CEC
(23773 to 23788). For file who's number is in the A_ register.
(16 bytes are moved).
ROUTINE 9 (8 09)

Write file info from DOS variables 5CDD to 5CEC (23773 to 23788)
to disk. For file who’s number is in the A register. (16 bytes
are moved).

ROUTINE 18 (# QA)

Search disk catalogue for file who’s name and type are in the
DOS variables 5CDD to 5CE5 (23773 to 23781). On completion
address 5D@F has the number the file has in the catalogue or FF
{f the file ts not found in the catalogue.
ROUTINE 11 (# OB)

SAVE a non-basic file. File name and type must be in DOS
variables 5CDD to 5CE5 (23773 to 23781), DE = length in bytes
HL= start address. :
ROUTINE 12 (#8 @C)

’

SAVE a BASIC file. On entry: File name and
type must be in DOS variables SCDD to SCES (23773 to 23781).
Memory 5CD1 (23761) (LO)~5CD2 (23762) (HI) must have the eutorun
line number.

ww ee a ee ee re ee ew ee ee Hee eee

DOS as an exit from all the other routines.
ROUTINE 14 (# QE) (explained in detail later).

LOAD (BASIC-CODE-DATA). The operation depends on the contents of
locations 5CD2 (23762),5CD7 (23767),5D18 (23824) and = the
registers A°- HL - DE. The file name and type must’ be in DOS
variables S5CDD to 5CES (23773 to 23786).
ROUTINE 18 (# 12)

ERASE the file who’s name and type are in variables SCDD to
S5CE5S (23773 to 23786).

ROUTINE 19 (# 1 3)

LDIR memory to DOS variables 5CDD to SCEC (23773 to 23786) HL is
memory pointer.

ROUTINE 28 (# 14)

LDIR DOS variables 5CDD to 5CEC (23773 to 23788) to memory. HL
is memory pointer,

Details on routine 14 (# GE)

Routine 14 is the most complex routine, it is used to LOAD a file
I will explain the different cases. You must ALWAYS make sure
that the file name and type are in DOS variables SCDD to S5CE5
(23773 to 23788) before CALLing routine 14, otherwise a “NO
FILE” message is generated and the operation is aborted.

Staal ot tala - <7 a etre

a nee

oe sarees

For a BASIC file:
ete mene mewn ee nee

5D18 = 28 A register = 00 then CALL routine 14
“there muat be enough room below RAMTOP
“any previous BASIC is wiped out

+ For a DATA file (number or character array):
weet eew wwe ween mew ee HH ee eee eee eee ee ne wee

[4] A register = 00 HL register = 2000
array name exp]. 61 for number array “a”

Ci for character array “a$"
the routine DiMensions the array before LOADING the data.

$D10
5Cb2 wou

For a CODE file:

§D18 has following controls over routine 14:
5D1@ = O@ = LOAD a complete file
5D10 = FF = LOAD oné sector only
5D1@ different from 02 and from FF = write one sector to disk.

“with 5D10 = 20

-A register = @@ LOAD the file to the address it was SAVED from
“A register @3 LOAD the first sectors of a file to the
address in HL register. D register = number of sectors to load

“A reg. not @8’and not 03 = LOAD the file to the address in HL

-with 5Di® = FF

LOAD the sector who's number is in the L register to the address
specified in loc’s 5CD7-5CD8.

example: if L = 5, the fifth sector of the file is LOADED.

-with $D1@ different from @@ and from FF
Seow nee meee eee meee eee eee He ee eee ee ee een

WRITE one sector to a file. As above the sector number must be
in the L register and the memory address in loc's SCD7-5CD8
before routine 14 is CALLed.

This concludes part one of this article, the next BDUC
newsletter will have the second part with examples of how to
use the routines from machine code.

BOU C, 2,DOWNHAM AVENUE, RAWTENSTALL, ROSSENDALE,
LANCASHIRE, BB4 8JY.ENGLAND. PHONE:010 44 706 218354

ee a na a eR

Sr oe re ee

